## CHAPTER IV

## RESULT OF THE RESEARCH

As it has been mentioned in the previous chapter that the sample was taken from one class of Madrasah Aliyah Negeri (MAN) 4 Tangerang. It is the second years students. The class consist of 25 students. There are two data in this research, the first is data from speaking test and the second is data from questionnaires. It has been analyzed the results of student self confidence and speaking achievement. Then, this chapter shows the correlation between them. The whole data is as follow:

## A. Data Self-confidence from questionnaires

The data of self-confidence questionnaires and statistic analyzed can be seen below:

## Table 4.1

The conversion of whole X variable

| No. | Name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | X |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | AUN | 2 | 2 | 1 | 3 | 3 | 3 | 3 | 5 | 5 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 43 |
| 2 | AF | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 32 |
| 3 | A | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 3 | 4 | 2 | 2 | 2 | 1 | 2 | 2 | 32 |
| 4 | AW | 2 | 3 | 2 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | 2 | 2 | 2 | 2 | 3 | 45 |
| 5 | DAG | 3 | 2 | 2 | 3 | 3 | 4 | 3 | 4 | 4 | 4 | 2 | 3 | 2 | 2 | 1 | 2 | 44 |
| 6 | EK | 2 | 1 | 2 | 3 | 3 | 2 | 2 | 5 | 4 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 43 |
| 7 | HN | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 5 | 3 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 31 |
| 8 | HM | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 1 | 26 |
| 9 | II | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 23 |
| 10 | IL | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 25 |
| 11 | L | 2 | 1 | 2 | 4 | 3 | 2 | 3 | 4 | 3 | 4 | 3 | 3 | 2 | 1 | 2 | 3 | 42 |
| 12 | MM | 3 | 4 | 2 | 4 | 4 | 4 | 4 | 5 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 1 | 48 |


| 13 | MU | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 5 | 5 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | M | 2 | 4 | 3 | 3 | 4 | 4 | 4 | 5 | 2 | 2 | 3 | 4 | 3 | 3 | 2 | 3 | 51 |
| 15 | NZN | 5 | 3 | 2 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 | 4 | 4 | 1 | 4 | 5 | 65 |
| 16 | NA | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 5 | 3 | 3 | 2 | 2 | 4 | 3 | 4 | 3 | 43 |
| 17 | SN | 2 | 1 | 1 | 3 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 31 |
| 18 | YS | 2 | 1 | 1 | 4 | 3 | 2 | 2 | 5 | 3 | 3 | 1 | 2 | 1 | 3 | 3 | 3 | 39 |
| 19 | HT | 2 | 2 | 2 | 4 | 3 | 4 | 3 | 5 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 36 |
| 20 | IO | 1 | 2 | 2 | 3 | 3 | 3 | 2 | 4 | 3 | 3 | 2 | 2 | 3 | 2 | 2 | 2 | 39 |
| 21 | AD | 5 | 3 | 2 | 5 | 4 | 5 | 5 | 5 | 5 | 3 | 5 | 4 | 4 | 1 | 4 | 5 | 65 |
| 22 | DD | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 5 | 3 | 3 | 2 | 2 | 4 | 3 | 4 | 3 | 43 |
| 23 | KRT | 2 | 1 | 1 | 3 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 | 2 | 3 | 31 |
| 24 | MS | 3 | 3 | 3 | 3 | 4 | 4 | 3 | 5 | 5 | 3 | 3 | 4 | 3 | 4 | 3 | 4 | 57 |
| 25 | SM | 1 | 1 | 1 | 4 | 2 | 2 | 1 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 32 |
| Total |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1023 |
| Average/Mean |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 40.92 |

The table shows that total scores from 25 students are 1023. The mean or average is 40,92 .

In addition, the value of each student is sorted from the smallest to the largest, it will be easier to analyze. As can be seen below:

An analysis of whole X variable

| 23 | 25 | 26 | 31 | 31 | 31 | 32 | 32 | 32 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 39 | 39 | 42 | 43 | 43 | 43 | 43 | 44 | 45 | 48 |
| 51 | 57 | 57 | 65 | 65 |  |  |  |  |  |

Those data analyze to variable X condition by using statistical formulation in the following:
a. Find out ranges

$$
\begin{aligned}
\mathrm{R} & =\mathrm{Xmax}-X \min \\
& =65-23=42
\end{aligned}
$$

b. Looking for the class interval (K)

$$
\begin{aligned}
\mathrm{K} & =1+3,3 \log (\mathrm{n}) \\
& =1+3,3 \log (25) \\
& =5,61 \text { round } 6
\end{aligned}
$$

Explanation:
$\mathrm{P}=$ Long class interval
$\mathrm{R}=$ Ranges
$\mathrm{K}=$ Class interval
c. Looking for long class interval (P)

$$
\begin{aligned}
\mathrm{P} & =\frac{R}{K} \\
& =\frac{42}{6} \\
& =7
\end{aligned}
$$

Table 4.2
Distribution Frequency of Self Confidence

| Interval | F | Xi <br> (midpoint) | FX | X | $\mathrm{X}^{2}$ | $\mathrm{FX}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $23-29$ | 3 | 37,5 | 112,5 | $-3,42$ | 11,6964 | 35,0892 |
| $30-37$ | 7 | 48,5 | 339,5 | 7,58 | 57,4564 | 402,1948 |
| $38-44$ | 8 | 60 | 480 | 19,08 | 364,0464 | 2912,371 |
| $45-51$ | 3 | 70,5 | 211,5 | 29,58 | 874,9764 | 2624,929 |


| $52-58$ | 2 | 81 | 162 | 40,08 | 1606,406 | 3212,813 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $59-65$ | 2 | 91,5 | 183 | 50,58 | 2558,336 | 5116,673 |
| Total | 25 |  | 1488,5 |  |  | 14304,07 |

According to the table above, there are 6 class of interval, then long class interval is 7. Additionally, total Frequency is 25. After calculates from the data obtained $\sum \mathrm{FX}$ is 1488,5 and $\sum \mathrm{FX}^{2}$ is 14304,07. Some explanation about table can be seen below:

$$
\begin{array}{ll}
\mathrm{F} & =\text { Frequency } \\
\mathrm{Xi}(\text { midpoint }) & =\frac{\text { Lower class limit }+ \text { upper class limit }}{2} \\
\mathrm{FX} & =\mathrm{Fx} \text { midpoint } \\
\mathrm{X} & =\mathrm{Xi}-\text { mean }
\end{array}
$$

Based on the table distribution frequency of self-confidence. The researcher search standard of deviation by using formula:

$$
\begin{aligned}
\mathrm{SD} \quad & =\sqrt{\frac{\sum f x^{2}}{\sum f}} \\
& =\sqrt{ } \frac{14304,07}{25} \\
& =\sqrt{ } 572.1628 \\
& =23,91
\end{aligned}
$$

To look limits class by using formula:

B $\quad=$ lower limits class $-0,5$

To look for Z score by using formula

$$
\begin{array}{ll}
\mathrm{Z} 1 & =\frac{B-M e a n}{S D} \\
& =\frac{22,5-40,92}{23,91}=-0,77 \\
\mathrm{Z} 2 & =\frac{29,5-40,92}{23,91}=-0,47 \\
\mathrm{Z} 3 & =\frac{37,5-40,92}{23,91}=-0,14 \\
\mathrm{Z} 4 & =\frac{44,5-40,92}{23,91}=0,14 \\
\mathrm{Z} 5 & =\frac{51,5-40,92}{23,91}=0,44 \\
\mathrm{Z} 6 & =\frac{58,5-40,92}{23,91}=0,73
\end{array}
$$

Table 4.3

To arrange the table for expected in frequently

| Class <br> Interval | B | Z <br> score | Z <br> table | L | F | Fh |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $23-29$ | 22,5 | $-0,77$ | 0,2206 | $-0,0986$ | 3 | $-2,465$ |
| $30-37$ | 29,5 | $-0,47$ | 0,3192 | $-0,1251$ | 7 | $-3,1275$ |
| $38-44$ | 37,5 | $-0,14$ | 0,4443 | $-0,1114$ | 8 | $-2,785$ |
| $45-51$ | 44,5 | 0,14 | 0,5557 | $-0,1143$ | 3 | $-2,8575$ |
| $52-58$ | 51,5 | 0,44 | 0,6700 | $-0,0973$ | 2 | $-2,4325$ |
| $59-65$ | 58,5 | 0,73 | 0,7673 | $-0,0788$ | 2 | $-1,97$ |


| (F-Fh) | $(\text { F-Fh })^{2}$ | $(\text { (F-Fh })^{2} /$ Fh |
| :--- | :--- | :--- |
| 5,465 | 29,86 | $-12,1135$ |
| 10,1275 | 102,56 | $-32,7929$ |
| 10,785 | 116,31 | $-41,7630$ |
| 5,8575 | 34,31 | $-12,0069$ |
| 4,4325 | 19,64 | $-8,0739$ |
| 3,97 | 15,76 | -8 |
| Total |  |  |
|  |  | $-114,7$ |

Degree of freedom can be seen below:

$$
\begin{aligned}
& \mathrm{k}=\text { variables }=2 \\
& \mathrm{n}=\text { respondents }=25 \\
& \begin{aligned}
& \mathrm{DF} \quad=\mathrm{n}-\mathrm{k} \\
&=25-2 \\
& \quad=23 \longrightarrow \mathrm{X}^{2} \text { table }=1,71387
\end{aligned}
\end{aligned}
$$

Based on the table above, $\mathrm{X}^{2}$ score $=-114,7$ and $\mathrm{X}^{2}$ table $=$ 1,71387 , so $\mathrm{X}^{2}$ score $<\mathrm{X}^{2}$ table and that sample is normal. The normality test shows the results of self-confidence is suitable for the normality.

Table 4.4

Data Distribution of Self-Confidence Interval

| Score | Number of <br> students | Categories | Percentages |
| :---: | :---: | :---: | :---: |
| $61-80$ | 2 | high <br> confidence | $8 \%$ |
| $38-60$ | 13 | Average | $52 \%$ |
| $16-37$ | 10 | Low <br> confidence | $40 \%$ |

It was revealed that from the questionnaire, the three levels of selfconfidence were all perceived by the students with different numbers; two of the students in high level self-confidence or the frequency can be seen in the amount of $8 \%$, Thirteen students in average self- confidence or $52 \%$, and ten students who has low self-confidence level or $40 \%$.

## B. Data Speaking achievement

This research has two variables. The Y variable is speaking achievement. To get the data from this variable, the researcher conducted oral test. The material of speaking test is about expression of advice. The tables below shows the result of students' speaking achievement.

Table 4.5
The conversion of whole Y variable

| No. | Initial Name | Criteria |  |  |  |  | Score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 这 | E 0 0 0 0 0 0 0 |  |
| 1 | AUN | 2 | 3 | 3 | 2 | 3 | 13 |
| 2 | AF | 2 | 2 | 2 | 2 | 3 | 11 |
| 3 | A | 3 | 2 | 3 | 2 | 4 | 14 |
| 4 | AW | 3 | 3 | 3 | 3 | 3 | 15 |
| 5 | DAG | 2 | 2 | 4 | 3 | 3 | 14 |
| 6 | EK | 2 | 3 | 4 | 4 | 3 | 16 |
| 7 | HN | 2 | 2 | 2 | 2 | 2 | 10 |
| 8 | HLM | 2 | 2 | 2 | 2 | 2 | 10 |
| 9 | II | 2 | 3 | 4 | 3 | 3 | 15 |
| 10 | IL | 2 | 3 | 4 | 3 | 2 | 14 |
| 11 | L | 3 | 3 | 5 | 3 | 3 | 17 |
| 12 | MM | 5 | 5 | 5 | 5 | 5 | 25 |
| 13 | MU | 4 | 4 | 5 | 4 | 3 | 20 |
| 14 | M | 3 | 3 | 5 | 3 | 5 | 19 |
| 15 | NZN | 3 | 4 | 5 | 4 | 4 | 20 |


| 16 | NA | 3 | 3 | 5 | 3 | 3 | 17 |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | SN | 2 | 3 | 4 | 3 | 3 | 15 |
| 18 | YS | 2 | 2 | 4 | 3 | 3 | 14 |
| 19 | HT | 2 | 3 | 3 | 3 | 3 | 14 |
| 20 | IO | 2 | 3 | 3 | 3 | 3 | 14 |
| 21 | AD | 2 | 3 | 5 | 4 | 3 | 17 |
| 22 | DD | 2 | 3 | 3 | 3 | 3 | 14 |
| 23 | KRT | 2 | 3 | 5 | 2 | 3 | 15 |
| 24 | MS | 2 | 2 | 2 | 2 | 2 | 10 |
| 25 | SM | 2 | 4 | 3 | 15 |  |  |
| N=25 |  | Total |  | 378 |  |  |  |

Based on students speaking test, total scores from 25 students are 378. Then, mean or average is 15,12 . Additionally, the value of each student is sorted from the smallest to the largest, it will be easier to analyze. As can be seen below:

An analysis of whole $Y$ variable

| 10 | 10 | 10 | 11 | 13 | 14 | 14 | 14 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 14 | 14 | 14 | 15 | 15 | 15 | 15 | 15 | 16 |
| 17 | 17 | 17 | 19 | 20 | 20 | 25 |  |  |

Those data analyze to variable Y condition by using statistical formulation in the following:
d. Find out ranges

$$
\begin{aligned}
\mathrm{R} & =\mathrm{Ymax}-\mathrm{Y} \min \\
& =25-10 \\
& =15
\end{aligned}
$$

e. Looking for the class interval (K)

$$
\begin{aligned}
\mathrm{K} & =1+3,3 \log (\mathrm{n}) \\
& =1+3,3 \log (25) \\
& =5,61 \text { round } 6
\end{aligned}
$$

f. Looking for long class interval (P)

$$
\begin{aligned}
\mathrm{P} & =\frac{R}{K} \\
& =\frac{15}{6} \\
& =2,5 \text { round } 3
\end{aligned}
$$

Explanation:
$\mathrm{P}=$ Long class interval
$R=$ Ranges
$\mathrm{K}=$ Class interval

Table 4.6


According to the table above, there are 6 class of interval, then long class interval is 3. Additionally, total Frequency is 25. After calculates from the data obtained $\sum F Y^{2}$ is 596,49 . Some explanation about table can be seen below:

F = Frequency
$\mathrm{Yi}($ midpoint $)=\frac{\text { Lower class limit }+ \text { upper class limit }}{2}$

Y
$=\mathrm{Yi}$ - mean

FY $\quad=\mathrm{Fx}$ midpoint

Based on the table distribution frequency of self-confidence.
The researcher search standard of deviation by using formula:

$$
\begin{aligned}
\mathrm{SD} & =\sqrt{\frac{\Sigma f y^{2}}{\Sigma f}} \\
& =\sqrt{ } \frac{596,49}{25} \\
& =\sqrt{ } 23,8596 \\
& =4,88
\end{aligned}
$$

To look limits class by using formula:

B $=$ lower limits class $-0,5$

To look for Z score by using formula

$$
\begin{array}{ll}
\mathrm{Z} 1 & =\frac{B-\text { Mean }}{S D} \\
& =\frac{9,5-15,12}{4,88}=-1,15 \\
\mathrm{Z} 2 & =\frac{12,5-15,12}{4,88}=-0,53 \\
\mathrm{Z} 3 & =\frac{15,5-15,12}{4,88}=-0,38 \\
\mathrm{Z} 4 & =\frac{18,5-15,12}{4,88}=0,69 \\
\mathrm{Z} 5 & =\frac{21,5-15,12}{4,88}=1,30 \\
\mathrm{Z} 6 & =\frac{24,5-15,12}{4,88}=1,92
\end{array}
$$

Table 4.7

To arrange the table for expected in frequently

| Class <br> Interval | B | Z score | Z table | L | F | Fh |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $10-12$ | 9,5 | $-1,15$ | 0,1251 | $-0,173$ | 4 | $-4,325$ |
| $13-15$ | 12,5 | $-0,53$ | 0,2981 | $-0,0539$ | 1 | $-1,347$ |
| $16-18$ | 15,5 | $-0,38$ | 0,3520 | $-0,4029$ | 4 | $-10,0725$ |
| $19-21$ | 18,5 | 0,69 | 0,7549 | $-0,1483$ | 3 | $-3,7075$ |
| $22-24$ | 21,5 | 1,30 | 0,9032 | $-0,0694$ | 0 | $-1,735$ |
| $25-27$ | 24,5 | 1,92 | 0,9726 | $-0,0217$ | 1 | $-0,542$ |


| $(\mathrm{F}-\mathrm{Fh})$ | $(\mathrm{F}-\mathrm{Fh})^{2}$ | $(\mathrm{~F}-\mathrm{Fh})^{2} / \mathrm{Fh}$ |
| :--- | :--- | :--- |
| $-17,3$ | 299,29 | $-69,2$ |
| $-17,5$ | 306,25 | $-227,35$ |
| $-40,29$ | 1623,28 | $-161,15$ |


| $-11,12$ | 123,65 | $-33,35$ |  |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | Explanations: |
| $-0,542$ | 0,29 | $-0,53$ | $\mathrm{~L}=0,1251-0,2981$ and so on |
| Total | $-491,56$ | until the end of rows interval. |  |

$\mathrm{N}=$ Total of students $=25$
$\mathrm{Fh}=\mathrm{L} \times \mathrm{N}$

Degree of freedom can be seen below:
$\mathrm{k}=$ variables $=2$
$\mathrm{n}=$ respondents $=25$

DF $=\mathrm{n}-\mathrm{k}$
$=25-2$
$=23 \longrightarrow \mathrm{Y}^{2}$ table $=1,71387$

Based on the table we can know that $\mathrm{Y}^{2}$ score $=-491,58$ and $\mathrm{Y}^{2}$ table $=1,71387$, so $\mathrm{Y}^{2}$ score $<\mathrm{Y}^{2}$ table and that sample is normal. The normality test shows the results of self-confidence is suitable for the normality.

Table 4.8
Distribution of Students' Speaking Achievement

| No | Score | Number of | Category | Percentage |
| :--- | :--- | :--- | :--- | :--- |


|  | Interval | Students |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $21-25$ | 1 | Very good | $4 \%$ |
| 2 | $16-20$ | 7 | Good | $28 \%$ |
| 3 | $10-15$ | 17 | Average | $68 \%$ |
| 4 | $5-9$ | - | Poor | - |
| 5 | $0-4$ | - | Very poor | - |

Based on the distribution above, the result showed that one student has very good speaking achievement or the frequency can be seen in the amount of $4 \%$, the students has good speaking achievement are seven students or $28 \%$, the students has average speaking achievement are seventeen students or $68 \%$. Thus, it can be assumed that most of students at Madrasah Aliyah Negeri (MAN) 4 Tangerang on second year have average speaking achievement.

Table 4.9

The Correlation between X and Y Variable

| No | X | Y | $\mathrm{X}^{2}$ | $\mathrm{Y}^{2}$ | XY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 43 | 13 | 1849 | 169 | 559 |
| 2 | 32 | 11 | 1024 | 121 | 352 |
| 3 | 32 | 14 | 1024 | 196 | 448 |
| 4 | 45 | 15 | 2025 | 225 | 675 |
| 5 | 44 | 14 | 1936 | 196 | 616 |
| 6 | 43 | 16 | 1849 | 256 | 688 |


| 7 | 31 | 10 | 961 | 100 | 310 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 26 | 10 | 676 | 100 | 260 |
| 9 | 23 | 15 | 529 | 225 | 345 |
| 10 | 25 | 14 | 625 | 196 | 350 |
| 11 | 42 | 17 | 1764 | 289 | 714 |
| 12 | 48 | 25 | 2304 | 625 | 1200 |
| 13 | 57 | 20 | 3249 | 400 | 1140 |
| 14 | 51 | 19 | 2601 | 361 | 969 |
| 15 | 65 | 20 | 4225 | 400 | 1300 |
| 16 | 43 | 17 | 1849 | 289 | 731 |
| 17 | 31 | 15 | 961 | 225 | 465 |
| 18 | 39 | 14 | 1521 | 196 | 546 |
| 19 | 36 | 14 | 1296 | 196 | 504 |
| 20 | 39 | 14 | 1521 | 196 | 546 |
| 21 | 65 | 17 | 4225 | 289 | 1105 |
| 22 | 43 | 14 | 1849 | 196 | 602 |
| 23 | 31 | 15 | 961 | 225 | 465 |
| 24 | 57 | 15 | 3249 | 225 | 855 |
| 25 | 32 | 10 | 1024 | 100 | 320 |
| Total | 1023 | 378 | 45097 | 5996 | 16065 |

According to the table above that total each items of variable, as know X is $1023, \mathrm{Y}$ is $378, \mathrm{X}^{2}$ is $45097, \mathrm{Y}^{2}$ is $5996, \mathrm{XY}$ is 16065.

## C. Correlation Analysis

Based on the result of the score above, it can be described as follows:

| N | $: 25$ |  |  |
| :--- | :--- | :--- | :--- |
| $\sum \mathrm{X}$ | $: 1023$ | $\sum \mathrm{Y}^{2}$ | $: 5996$ |
| $\sum \mathrm{Y}$ | $: 378$ | $\sum \mathrm{XY}$ | $: 16065$ |
| $\sum \mathrm{X}^{2}$ | $: 45097$ |  |  |

After the calculation of whole the data from variable (x) and variable (y), the next step is to statistical data analysis in order to insert the information from the Table into the raw score formula (Product Moment) to find the correlation index, as follow :

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{xy}}=\frac{\mathrm{n} \Sigma \mathrm{xy}-(\Sigma \mathrm{x})(\Sigma \mathrm{y})}{\sqrt{ }\left\{\mathrm{n} \Sigma \mathrm{x}^{2}-(\Sigma \mathrm{x})^{2}\right\}\left\{\mathrm{n} \Sigma \mathrm{y}^{2}-(\Sigma \mathrm{y})^{2}\right\}} \\
& \mathrm{r}_{\mathrm{xy}}=\frac{(25 \times 16065)-1023 \times 378}{\sqrt{\left((25 \times 45097)-1023^{2}\right)\left(\left(25 \times 5996-(378)^{2}\right)\right.}} \\
& \mathrm{r}_{\mathrm{xy}}=0,6
\end{aligned}
$$

Based on the calculation $\mathrm{r}_{\mathrm{xy}}$ is 0,6 . It has indicated that the correlations between two variables is 0,6 .

## D. Examining Hypothesis significant correlation

After calculates the correlation, the researcher was taking the hypothesis significance of correlation with examining $\mathrm{t}_{\text {score }}$. As follow the calculates below:

$$
\begin{aligned}
\mathrm{t} & =\frac{r \sqrt{n}-2}{(\sqrt{1-r 2}} \\
& =\frac{2,87}{0,8} \\
& =3,5
\end{aligned}
$$

The last step is Determining Degree of Freedom ( $d f$ )
$\mathrm{t}_{\text {.table }}=\mathrm{n}-2$

$$
=25-2=23=1,71387
$$

At the degree of significance $5 \%=1,701$
At the degree of significance $1 \%=2,467$
$\mathrm{t}_{\text {.score }}>\mathrm{t}$.table

## E. The Interpretation of the Data

After the writer preceded the formula, as it has been found out about the result of the correlation, the next step is to give the interpretation of " r " score ( $\mathrm{r}_{\mathrm{xy}}$ ).

1. From the data appeared that the correlation between variable X and variable Y is 0,6 . It means the correlation is strong enough between two variables. To give the simple interpretation toward a correlation " r " Product Moment $\left(\mathrm{r}_{\mathrm{xy}}\right)$ can be seen by the table of the Interpretation of Product Moment Score.

Table 4.10
Interpretation of Product Moment Score

| Coefficient of correlation "r" | Interpretation |
| :--- | :--- |
| $0.00-0.20$ | The Correlation is Neglected |
| $0.20-0.40$ | The Correlation is Week |


| $0.40-0.70$ | The Correlation Strong Enough |
| :--- | :--- |
| $0.70-0.90$ | The Correlation Strong |
| $0.90-1.00$ | The Correlation is Very strong |

Looking at the score $\mathrm{r}_{\mathrm{xy}}=0,6$ that score is between $0,40-0,70$ which is the correlation between the two variables is strong enough, it means there is correlation between variable X and variable Y .

To know degree of correlation (CD), the researcher using determination coefficient:

$$
\begin{aligned}
\mathrm{CD} & =\mathrm{r}^{2} \times 100 \% \\
& =0,36 \times 100 \% \\
& =36 \%
\end{aligned}
$$

It can be identified that the correlation between two variables are 36\%

