CHAPTER IV

RESULT OF THE RESEARCH

A. Description of Data

In this chapter, the writer would like to present the description of the data obtained. As the writer stated at the previous chapter that the population of the study was the second grade of MTs Raudlatul Muta'allimin Sidadung Baros - Serang in academic year 2016/2017, as tested in this chapter, the writer took 43 students as the sample from 67 students from all the second grade. The goal of the research is intended to prove the accurate data in accordance with the research title.

In order to know the effectiveness of using Animation Clips in Listenig narrative text, the writer gave pre-test before teaching and using Animation Clips technique in one experimental class. After teaching and using technique, the writer gave students post-test which be used data in the research. The writer gave students worksheet multiple choices.

Table 4.1
The Students' Scores of Experiment Class

No	Name of Students	Pre-test Score	Post-test Score
1	SAS	25	80
2	MSP	20	85
3	ABH	30	70
4	AP	25	65
5	IHK	35	85
6	YLY	40	65
7	NF	35	65
8	END	40	75
9	TAM	30	70
10	SJ	35	65
11	FTZ	25	70
12	STKH	20	70
13	TAP	20	80
14	AA	40	85
15	SYH	15	75
16	S.F	15	75
17	ABR	35	60
18	LU	50	85
19	SDR	30	70
20	TFKI	25	70
21	MSRH	35	80

22	PRFD	40	75
23	EDH	30	85
		$\sum X=695$	$\sum X=1705$
		$M=30.22$	$M=74.13$

Mean of pre-test :
$M=\frac{\sum X}{N}=\frac{695}{23}=30,22$

Mean of post-test :
$M_{l}=\frac{\sum X}{N}=\frac{1705}{23}=74,13$

The average score of pre test experimental class was 30,22 and the score of post-test experimental class was 74,13 . It shows that in experimental class got increase score.s

Graphic 4.1

The comparison of pre-test and post-test at the experimental class.

Based on the explanation above, it is showed that the results of the experiment class got the significant improvement after giving treatment, it is seen from the average score of post-test is better than the average score of pre-test, that is $74,13>30,22$.

Table 4.2

The Students' Score of Control Class

No	Name of Students	Pre-test Score	Post-test Score
1	ER	15	35
2	E LN	30	55

3	ENKF	40	50
4	UH	45	75
5	EJ	30	75
6	NS	30	60
7	SRD	40	65
8	JHD	30	60
9	RSM	40	55
10	DDS	40	55
11	ARR	40	70
12	AGM	35	45
13	TH	35	50
14	BAZ	35	65
15	SM	30	60
16	ADR	40	45
17	DH	10	40
18	FA	40	50
19	RZL	35	40
20	MJH	35	45
21	STM	20	40
22	LFR	20	50
23	SRM	35	70
		$\sum X=750$	$\sum X=1255$
		$M=32,61$	$M=54,57$

Mean of pre-test :
$M=\frac{\sum X}{N}=\frac{750}{23}=32,61$

Mean of post-test :
$M_{l}=\frac{\sum X}{N}=\frac{1225}{23}=54,57$

The average score of pre test control class was 32,61 and the score of post-test control class was 54,75 .

Graphic 4.2

The comparison of pre-test and post-test at the experimental class.

Based on the explanation above, it is showed that the results of the control class got the significant improvement after giving treatment, it is seen from the average score of post-test is better than the average score of pre-test, that is $54.75>32,61$.

The Table 4.3

The Calculation Score each Students

No	Score		$\mathbf{X 1}$	$\mathbf{X 1}^{2}$	$\mathbf{y y}$	$\mathbf{X 2}$
	$\mathbf{X 1}$	$\mathbf{X 2}$				
1	35	80	-19.32	373.19	5.87	34.45
2	55	85	0.68	0.46	10.87	118.15
3	50	70	-4.32	18.65	-4.13	17.06

4	75	65	20.68	427.74	-9.13	83.36
5	75	85	20.68	427.74	10.87	118.15
6	60	65	5.68	32.28	-9.13	83.36
7	65	65	10.68	114.10	-9.13	83.36
8	60	75	5.68	32.28	0.87	0.76
9	55	70	0.68	0.46	-4.13	17.06
10	55	65	0.68	0.46	-9.13	83.36
11	40	70	-14.32	205.01	-4.13	17.06
12	45	70	-9.32	86.83	-4.13	17.06
13	50	80	-4.32	18.65	5.87	34.45
14	65	85	10.68	114.10	10.87	118.15
15	60	75	5.68	32.28	0.87	0.76
16	45	75	-9.32	86.83	0.87	0.76
17	40	60	-14.32	205.01	-14.13	199.67
18	50	85	-4.32	18.65	10.87	118.15
19	40	70	-14.32	205.01	-4.13	17.06
20	45	70	-9.32	86.83	-4.13	17.06
21	70	80	15.68	245.92	5.87	34.45
22	50	75	-4.32	18.65	0.87	0.76
23	70	85	15.68	245.92	10.87	118.15
Σ	1255	1705				

Based on the data above is known that:

$$
\begin{array}{ll}
\sum \mathrm{X}_{1}=1705 ; & \sum \mathrm{XI}^{2}=106350 ; \\
\sum \mathrm{X}_{2}=1255 ; & \sum \mathrm{X} 2^{2}=39775 \\
\sum \mathrm{~N} 1=20 & \sum \mathrm{~N} 2=20
\end{array}
$$

After getting the data from pre-test and post-test, the writer analyze it by using statistic calculation of t-test formula with the degree of significance 5% and 1% the formula as follow:

1. The average score of experiment class:

$$
\mathrm{X}_{1}=\frac{\sum X_{1}}{N_{1}}=\frac{1705}{23}=74.13
$$

2. The average score of control class:

$$
X_{1}=\frac{\sum X_{1}}{N_{1}}=\frac{1195}{23}=54.32
$$

3. Sum of the squared deviation score of experimental class:

$$
\sum \mathrm{X}_{1}^{2}=2221.47
$$

4. Sum of the squared deviation score of control class: 1247.83
5934.78

$$
\sum X_{2}^{2}=1332.61
$$

5. Determining t-table $\left(\mathrm{t}_{\mathrm{t}}\right)$ by using formula:

$$
d f=\mathrm{N}_{1}+\mathrm{N}_{2}-2=23+23-2=44
$$

Because the value of 44 is unavailable in the t-table, the researcher used the closer to 48 that is 60 as degree of freedom (df).

$$
\begin{aligned}
& t_{\text {hitung }}=\frac{M_{1}-M_{2}}{\sqrt{\left(\frac{J K_{1}+J K_{2}}{N_{1}+N_{2}-2}\right)\left(\frac{N_{1}+N_{2}}{N_{1} \cdot N_{2}}\right)}} \\
& \mathrm{t}_{0}=\frac{74.13-54.32}{\sqrt{\left(\frac{1332.61+2997.06}{23+23-2}\right)\left(\frac{23+23}{23.23}\right)}} \\
& t_{0=} \frac{19.81}{\sqrt{\left(\frac{4329.66}{44}\right)\left(\frac{46}{529}\right)}} \\
& t_{o=} \frac{19.81}{\sqrt{(98,40)(0,09)}} \\
& t_{o=}=\frac{19,81}{\sqrt{8,87}}=\frac{19,81}{2,98}=6,64
\end{aligned}
$$

Giving interpretation for "to"

Df $=(\mathrm{N} 1+\mathrm{N} 2-2)=(23+23-2)=44$ concultation to " t "
table score at appendix). On the table there is not df contain 44:
so the author used nearly df score is 60 , with df as number as 60 got $t_{\text {table }}$ as followed :

- Critical signification 5\%; $\mathrm{t}_{\text {table }}=2.00$
- Critical signification $1 \% \mathrm{t}_{\text {table }}=2.66$

If the author uses critical signification 5%; the hypothesis null is rejected because of " t " that the author got the
calculation $\left(\mathrm{t}_{\mathrm{o}}=\right)$ Is higher than $\mathrm{t}_{\text {table }}(6,64>2,00)$ and also critical signification $1 \% ;(6,64>2,66)$ so the author can conclude if to is higher than $\mathrm{t}_{\mathrm{t}} 2,00<6,64>2,66$. Its means that H_{a} (alternative hypothesis) of research is accepted and H_{0} (null hypothesis) is rejected.

The result above shows about the score of sample both experiment and control class. The writer used 44 students as sample for research 23 students from VIII A as experimental class and 23 students from VIII B as control class.

It is obtained that the value of $t_{o}(t$ observation $)$ is $6,13$. After found the data, the researcher compared it with $t_{t}(t$ table $)$ both in degree significance $5 \%=2,00$. So $t_{\text {observation }}>t_{\text {table }}=6,64$ $>2,00$.

A. Hypothesis Testing

To prove the hypothesis, the data obtained from the experimental class is calculated by using t-test formula with assumption as follow:

If $H_{o}: t_{o}<t_{t}$: The alternative hypothesis is rejected. It means there is no significant effect of using animation clips toward students' skill in listening.

If $H_{a}: t_{0}>t_{t}$: The alternative hypothesis is acccepted. It means there is signifcant effect of using animation clips toward students' skill in listening .

State:

1. If the result of calculation to (t observation) is bigger than tt to $>\mathrm{tt}$: the null hypothesis (ho) is rejected . its means that the experimental technique is accepted
2. If the result of calculation to (t observation) is smaller than tt to $>\mathrm{tt}$: the null hypothesis (ho) is accepted . its means that the experimental technique is rejected.

Based on the result of the calculation, the writer obtained the value of t_{0} is 6,64 and degree of freedom $(d f)=64$, to know whether the significant or not we have to look at the $\mathrm{t}_{\text {table }}$ in appendix. The result of $t_{\text {table }}$ on significant $5 \%=2.00$ and $1 \%=2.66$. it is indicated that $t_{0}>t_{t}$. So the null hypothesis (Ho) is rejected and the alternative hypothesis (Ha) is accepted.

B. The interpretation of Data

The explanation about the analysis of the result on the previous calculation data from controlled and experimental class both of pre test and post test, it has been proved that got mean of pretest score for experimental class $\left(X_{1}\right)=30,22$ and for controlled class $\left(\mathrm{X}_{2}\right)=32,61$. If pre-test score controlled class compared by mean post-test for controlled class $=54,32$ got different ; 21,71 and for experimental class $X=74,13$ got different $; 43,91$, than the score means difference for pre-test both of them got 2,39 and for post-test got 19,56 its means that there is significant effect for experimental class due to the evidence above although controlled class got effect but not as significant as experimental class.

After giving treatment on experimental class and without it on controlled class got t-score calculation $t_{0}(6,64)$ is higher than t table on critical significant 5% (2.00) and 1% (2.66) its mean Ha (alternative hypothesis) of research is accepted and H_{0} (null hypothesis) is rejected. This condition is proving that
there is a significance effect of using animation clips in teaching listening on the students experimental class to find out the students ability in learning listening.

The graphic also show the evidence of student score before and after giving test without treatment. There are increasing score for student controlled class and students experimental class which showed on the calculation before.

