CHAPTER IV

RESULT AND DISCUSSION

A. Data Description

In this chapter, the researcher would like to present the description of data obtained. The research is only directed to the students of the third grade of Daarul Muttaqien Tangerang. The writer divided them into two groups, 25 students as experimental class, it is from class IX C, and 25 students as control class, it is from class IX B. this research had been carried through four steps. They involve pre-test, two times treatment and post-test. The goal of the research is intended to prove the accurate data in accordance with the research title.

1. The score of Pre-test and Post-test of Experimental Class

Table 4.1

The result Score of Pre-test and Post-test Experimental Class

			SCORE					
		Main	Specific					
No	Name	Idea	Information	Inference		Reference	Vocabulary	
			PRE-TEST			POST-TE	ST	
			(X ₁)			(X ₂)		
1.	AAS		65		85			
2.	AAL		60		80			

3.	ANK	60	80
4.	DF	75	95
5.	EAS	40	60
6.	ES	65	80
7.	DMR	55	75
8.	HW	40	70
9.	IF	65	85
10.	FFAZ	70	90
11.	PS	65	85
12.	RNA	45	75
13.	RR	70	90
14.	SSP	75	95
15.	SAR	65	80
16.	STS	70	85
17.	SN	45	75
18.	SRSR	70	90
19.	AN	60	85
20.	AS	45	70
21.	DA	65	85
22.	ISF	35	65
23.	KCQ	70	85
24.	LA	75	90
25.	MJ	75	90
	∑XI	1525	2045
	MI	61	81,8

Mean by formula:

Pre-test $M_1 = \frac{\sum x1}{N_1}$ $M_2 = \frac{\sum x2}{N_2}$ $M_1 = \frac{\sum 1525}{25}$ = 61 $M_2 = \frac{\sum 2045}{25}$ = 81,8

Note:

- $\sum XI$: The score of pre-test experimental class
- $\sum X2$: The score of post-test experimental class
- M₁ : Mean of pre-test experimental class
- M₂ : Mean of post-test experimental class
- N₁ : Numbers of students of experimental class

Graphic 4.1

The Score in Pre-test and Post-test in Experimental Class

2. The score of Pre-test and Post-test of Control Class

Table 4.2

The result Score of Pre-test and Post-test Control Class

		SCORE						
No	Name	Main	Specific	Inferen	ce	Reference	Vocabulary	
		Idea	Information					
			PRE-TEST	I		POST-T	EST	
			(Y ₁)			(Y ₂)		
1.	SA		60		70			
2.	SHU		50		60			
3.	NFZ		70			80		
4.	NA		60			70		
5.	AP		75			85		
б.	AS		65			75		
7.	TDA	70			75			
8.	RS	60			65			
9.	SIA		45			70		
10.	SA		70		75			
11.	AF		80		80			
12.	WS		45		65			
13.	AS	55			70			
14.	А	60			75			
15.	AD		60			70		
16.	ACR		55			70		
17.	ATW	50				70		

18.	DA	50	60
19.	DAP	55	70
20.	LN	50	70
21.	MS	65	70
22.	NI	60	80
23.	NR	55	60
24.	NF	65	75
25.	RR	60	80
	∑XI	1490	1790
	MI	59,6	71,6

Mean by formula:

Pre-test Post-test $M_1 = \frac{\sum y1}{N_1}$ $M_2 = \frac{\sum y2}{N_2}$ $M_1 = \frac{\sum 1490}{25}$ $M_2 = \frac{\sum 1790}{25}$ = 59,6 = 71,6

Note:

- \sum YI : The score of pre-test control class
- $\sum Y2$: The score of post-test control class
- M₁ : Mean of pre-test control class

- M₂ : Mean of post-test control class
- N₁ : Numbers of students of control class

Graphic 4.2

The Score in Pre-test and Post-test in Control Class

Based on graphic above, it showed that the result of control class did not have the significant improvement, it is seemed from average score of post-test that is score of pre-test 71,6 > 59,6. This class also realized can effect improvement but lower than experimental class.

B. Analysis of Data

After getting the data from pre-test and post-test score of two classes. Than the researcher analyzed it by using t-test formula with the degree of significant 5% and 1% the writer used step as follows:

Table 4.3

The Score of Distribution Frequency

No	SCORE		x ₁	y 2	x_1^2	y1 ²
	X1	Y1	(XI-M ₁)	(Y1-M ₂)		
1.	85	70	3.2	-1.6	10.24	2.56
2.	80	60	-1.8	-11.6	3.24	134.56
3.	80	80	-1.8	8.4	3.24	7.056
4.	95	70	13.2	-1.6	174.24	2.56
5.	60	85	-21.8	13.4	475.24	179.56
6.	80	75	-1.8	3.4	3.24	11.56
7.	75	75	-6.8	3.4	46.24	11.56
8.	70	65	-11.8	-6.6	139.24	43.56
9.	85	70	3.2	-1.6	10.24	2.56
10.	90	75	8.2	3.4	67.24	11.56
11.	85	80	3.2	8.4	10.24	7.056
12.	75	65	-6.8	-6.6	46.24	43.56
13.	90	70	8.2	-1.6	67.24	2.56
14.	95	75	13.2	3.4	174.24	11.56
15.	80	70	-1.8	-1.6	3.24	2.56
16.	85	70	3.2	-1.6	10.24	2.56
17.	75	70	-6.8	-1.6	46.24	2.56
18.	90	60	8.2	-11.6	67.24	134.56
19.	85	70	3.2	-1.6	10.24	2.56

20.	70	70	-11.8	-1.6	139.24	2.56
21.	85	70	3.2	-1.6	10.24	2.56
22.	65	80	-16.8	8.4	282.24	7.056
23.	85	60	3.2	-11.6	10.24	134.56
24.	90	75	8.2	3.4	67.24	11.56
25.	90	80	8.2	8.4	67.24	7.056
Σ	2045	1790			1944	781.98
AVERAGE	81,8	71,6				

Note:

X1 =	= Score	Post-	Test	(Expe	erimental	l Class)	ĺ
------	---------	-------	------	-------	-----------	----------	---

Y1 = Score Post-Test (Control Class)

$$\mathbf{x}_1 = \mathbf{X} \mathbf{1} - \mathbf{M}_1$$
 (Mean X1)

 $y_1 = Y1-M_2$ (Mean Y1)

$$x_1^2$$
 = The squared value of X_1

 y_1^2 = The squared value of Y_1

1. Determine mean of variable X1 and X2

Variable X1Variable Y1Post-testPost-test
$$M_1 = \frac{\sum x1}{N_1}$$
 $M_2 = \frac{\sum y1}{N_2}$ $M_1 = \frac{\sum 2045}{25}$ $M_2 = \frac{\sum 1790}{25}$ $= 81,8$ $= 71,6$

2. Determine t-test

$$t_{0} = \frac{M_{1} - M_{2}}{\sqrt{\left\{\frac{\sum X_{1}^{2} + \sum Y_{1}^{2}}{N_{1} + N_{2} - 2}\right\}\left(\frac{N_{1} + N_{2}}{N_{1.N_{2}}}\right)}}$$

$$t_{0} = \frac{81,8-71,6}{\sqrt{\left\{\frac{1944+781,98}{25+25-2}\right\}\left\{\frac{25+25}{25.25}\right\}}}$$
$$t_{0} = \frac{10.2}{\sqrt{\left\{\frac{2725,98}{48}\right\}\left\{\frac{50}{625}\right\}}}$$
$$t_{0} = \frac{10.2}{\sqrt{\left\{56.79125\right\}\left\{0,08\right\}}}$$
$$t_{0} = \frac{10.2}{\sqrt{4.5433}}$$
$$t_{0} = \frac{10.2}{2.13}$$
$$t_{0} = 4.78$$

Note:

$$\begin{split} M_1 &= \text{The average score of experimental class (Mean X1)} \\ M_2 &= \text{The average score of control class (Mean Y1)} \\ \sum X_1^2 &= \text{Sum of the squared deviation score of experimental class} \\ \sum y_1^2 &= \text{Sum of the squared deviation score of control class} \\ N_1 &= \text{The number of student of experimental class} \\ N_2 &= \text{The number of student of control class} \\ 2 &= \text{Constant number} \end{split}$$

3. Degree of Freedom

df = N1+N2-2
=
$$25+25-2$$

= 48

There is no degree of freedom for 48, so the researcher uses the closer df from 48. In degree of significance 5% from 48 $t_t = 1.67$ and in degree of significance 1% from 48 $t_t = 2.40$. Based on the result statistic calculation, it is obtained that the score of t_0 is = 4.78 > t_t = 1.67 in degree of significance 5%. The score of t_0 = 4.78 > t_t = 2.40 in degree of significance 1%. To prove the hypothesis, the data obtained from the experimental class is calculated by using t-test formula with assumption as follow:

- If t_{observation}> t_{table}: The alternative hypothesis is accepted. It means there is a significant effect of Inference Prompter Chart towards students' reading comprehension at the third grade of SMP Daarul Muttaqien Tangerang.
- If t_{observation}<t_{table}: The Null hypothesis is rejected. It means there is no significant effect of Inference Prompter Chart towards students' reading comprehension at the third grade of SMP Daarul Muttaqien Tangerang.

C. Interpretation of Data

From the result of pre-test and post-test in experimental class, the researcher can be concluded that from the lowest score in pre-test is 35 and the highest in pre-test score is 75. After the writer conducted treatment of Inference Prompter Chart in teaching reading comprehension on narrative text and also conducted post-test. The lowest score in post-test is 65 and the highest score in post-test is 95.

Before deciding the result of hypothesis, the researcher proposes interpretation towards with procedure as follow:

- a. H_a : $t_{observation} > t_{table} =$ It means there is a significant effectiveness of Inference Prompter Chart in teaching reading comprehension on narrative text.
- b. H_o : $t_{observation} < t_{table}$ = It means there is no significant effectiveness of Inference Prompter Chart in teaching reading comprehension on narrative text.

According to the data, the value of $t_{observation}$ is bigger than $t_{table.} t_{observation} = 4.78 > t_{table} = 1.67 (5\%)$ or $t_{observation} = 4.78 > t_{table} = 2.40 (1\%)$, so H_o is rejected and H_a is accepted.

From the result above, the researcher give conclusion that it means there is a significant effectiveness of Inference Prompter Chart in teaching reading comprehension on narrative text. It can be seen that the student got better score by Inference Prompter Chart. This could be seen after comparing the score of pre-test (before Inference Prompter Chart) and post-test (after using Inference Prompter Chart).

Based on the data obtained from control and experimental class among the average scores, and t observation, the writer summarizes that teaching narrative text through Inference Prompter Chart has significant effectiveness toward students' reading comprehension because the purpose of this technique inference prompter chart was to create a learning atmosphere in more engaging and creative way. Where students read more and enjoy it more, they will become better readers. Beside that the students please be understand between contents and what they read.

The result of the research shows that the experimental class (the students who are taught using Inference Prompter Chart) has

the mean value (81,8), meanwhile the control class (the students who are not taught using Inference Prompter Chart) has the mean value (71,6). It can be said that the achievement score of experimental class is higher than control class. The following was the table of pre-test and post-test students' average score.

Table 4.4

The Pre-Test and Post Test Students' Average of the Experimental and Control Class

Class	The Average of Pre-Test	The Average of Post-
		Test
Experimental	61	81,8
Control	59,6	71,6

So, it could be concluded that Inference Prompter Chart is effective to facilitate students' reading comprehension on narrative text in experimental group. It can be seen at mean value of both groups. There is significant difference in the students' reading comprehension between experimental and control group.

Inference Prompter Chart more effective than other because of the inference prompter chart, students' are more familiar with a text given by the students'. Where with this method, students' will predict an event contained in the text and they also learn how to make inference of the event, then students' understand a text with carefully.

Inference Prompter Chart also can be quite personally rewarding for both students and educators. Readers are often asked

to interact with the literal meanings on the pages, but inference requires that each reader consider her own beliefs, values, and experiences before drawing conclusions.